(2}

© 00 N O

10

11

12

13

14
15
16

17

FaCE

face Recognition Challenges and Evaluations

Face Recognition Challenges and Evaluations (FaCE)

APIs for Recognition and Detection

of Faces in 2D Still Images
Version 1.0

Patrick Grother and Mei Ngan

Image Group
Information Access Division

Information Technology Laboratory

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

July 30, 2015

NIST API

Page 1 of 12

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

39
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54

FaCE

Table of Contents

R - 1 PSP POP PP O PPPPPPI 3
0 I @ T oY o o T oYl o F= L Lol o Y- o 1SRRI 3
O Yo o 1Yo [V SO T OO PO TP PTOPPRRPPPPRRNE 3
IO TR P Yo LNV [Y o=y T oF: e o SRS 3
1.4. Operating system, compilation, and linking €NVIrONMENT........ccuiiiiiiiii e e 3
1.5, SOftware and DOCUMENTATION ...cccuiiiiie ittt ettt ettt st e st e e bt e s bt e e bt e e sb b e e s aeeesabeesabeesabeesabeeebaessbeeesnseesaseesaneesane 4
1.6, RUNTIME DENAVION ..ttt ettt e e bt e bt e sb e e e s ab e e sab e e sab e e sabeeeabeesbaesbeeesabeenabeesaneenane 5
1.7, Threaded COMPUEAtIONScccciiieiciiee et et e e sttt e e e sttt e e et e e e st e e e e esateeeeessteeeasstaeaeassseeesassseeeassseeesannsenesnsseeeesssenennnnns 5

2. Data structures SUPPOITING The APlooo i ceee et e e e et e e et e e et e e e aateeesansaeeesstaeeeassseeesnnsaaeeansseeeannsseeesnsees 6
S O 1Y =T oV 1= 1 PO OUPP PP PRTTN 6
A U= To TN T =10 o T=] o} OO PSPPI 6
S T D - | = Y f ¥ (ot AU = PSP PP PEPTN 6

S N PSP P OPPRPOPRRTIR 7
70 O R R V=Y 4 ToF 1 4 [T PSP P PRSPPI 7
K o Tol < D=1 o o o o [ST PPPPRR 10

Annex A Submission of Implementations t0 the FACE..........c..ceiiiiiii e see et sre et e e e str e e e s nre e e e saraeeeentaeeesnneeas 11
A.1 Submission of IMPIEMENTAtIONS 1O NISTiiiiieiiie et e e er e e e et e e e e ate e e s saaaeeessnteeeeesreeessnsneeessnseeanans 11
A2 HOW L0 PArTiCIPATE cevieiiiiiiiiiiiiiiiititiit it s s s s s s s e s s s e s e s e s e sesesesasasasasanasaeaaaaseneeeeeneeeneeeeenaanans 11

List of Figures

Figure 1 — SChematic Of VeI ICAtIONccic it e s e e et e e e st e e e s ba e e e e nsaeeesnnseeessssreeeannsaeeesnnseens 8
List of Tables

Table 1 — FACE classes Of PArtiCiPaltionccicuieeiiiiiieceiee e sttt e e et e e e ee e e sttt eeesataeeesssseeeesasaeeeassaeesannsseesassaeeeassseesanssneessnseeennns 3
Table 2 — Implementation library fillename CONVENTIONoiiiiiiiie e e e e e et e e e st e e e e snteeeesanaeeeesnneeeaans 4
TADIE 3 = IIMAGE SEIUCT ..eeutiiiiieeite ettt ettt et sttt e s et e s a bt e s bt e sabe e e bt e s s bteeabe e e beeesaeeesabeesabeesabaesabeeesteebeeesnbeesnbeesaneenane 6
Lo LR A 1Y O T I 1Y o Y=Y 1= PSP 6
Table 5 — BOUNDING_BOX STIUCE c..uvvteieitiiieiiiieeeeitiereestteeesstteesassesesssssesessseeeassssesesssssesssssseesassssssssnssssesssssessassssesssssesesssseeesans 6
Table 6 — Functional summary of the 1:1 @ppliCatioN.......ccicuiii i e e e et e e e st e e e e rareeesennaaeeesnneeeens 7
Table 7 — Implementation template SiZ€ rEQUITEMENTSc.uiiiiiciiie e st e e ree e eetre e e st e e e e sstae e e enteeeesssaeeeessreeeessseeeessseeeaans 8
Table 8 — SDK INTIAlZATION ..eeitieeiie ettt st et e st e e bt e bt e e ateesabeesabeesabeesabeeebeeebeeesabeenabeesabeenane 8
Lo L R WoYa Y o1 Y A=l =T =T = T o PSP 9
Table 10 — TeMPIAte MATCNING ..eeieiiee et e et e e e st e e e s ta e e e s asaeeesasseeeaastaeeeansteeeaassaeeeassseesassneessnseeenans 9
Table 11 = SDK INTEIATIZATIONeeetiieiieetie ettt ettt e st e st e e sabe e s bt e s bt e e sabeesbteesabeesabeesnbeesabeesseesbteenaneens 10
L] o] R A o= Yol e [Tt i o T H OO TSP UP PO PRTPN 10

NIST API Page 2 of 12

55

56
57

58
59

60
61

62
63

64

65

66
67
68
69
70
71

72

73
74
75
76

77
78

79
80

81

82

83
84

85
86

87
88

89

FaCE

1. FaCE

1.1. Options for participation
The following rules apply:

— A participant must properly follow, complete and submit the Annex A Participation Agreement. It is not necessary to
do this for each submitted software submission to NIST, hereafter referred to as “SDK”.

— Any SDK shall implement exactly one of the functionalities defined in Table 1. So, for example, the face detection
functionality of a class DETECTION SDK shall not be merged with that of a class 1to1 SDK.

— In cases of corporate merger, or acquisition, or significant change in management, NIST may require re-submission of
a properly completed application form.

Table 1 - FaCE classes of participation

Function 1:1 verification Face Detection

Class label 1tol DETECTION

APl requirements | 3.1.2+3.1.3+ 3.2.1+3.2.2
3.1.4+3.15

1.2. Schedule

Participants may submit up to two algorithms at their first entry to the FaCE 1:1 evaluation. Thereafter, organizations
may submit algorithms no sooner than 150 calendar days after the prior submission.

In maintaining the public results reports, NIST will generally maintain results for the two most recently submitted
algorithms. NIST will generally cease to maintain results for algorithms submitted more than three years ago. NIST may
maintain additional results, particularly if they have some notable aspect (e.g. small template size).

1.3. Hardware specification

NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of
computer blades that may be used in the testing. The blades are labeled as Dell M905, M910, and M610. The following list
gives some details about the hardware of each blade type:

* Dell M610 - Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each)

¢ Dell M905 - Quad AMD Opteron 8376HE 2 GHz CPUs’ (4 cores each)
* Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each)

Each CPU has 512K cache. The bus runs at 667 Mhz. The main memory is 192 GB Memory as 24 8GB modules. We
anticipate that 16 processes can be run without time slicing.

NIST is requiring use of 64 bit implementations throughout.

1.4. Operating system, compilation, and linking environment

The operating system that the submitted implementations shall run on will be released as a downloadable file accessible
from http://nigos.nist.gov:8080/evaluations/, which is the 64-bit version of CentOS 7.0 running Linux kernel 3.10.0.

For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must run
under Linux.

NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide their library
in a format that is linkable using the C++11 compiler, g++ version 4.8.2.

A typical link line might be

!cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht
syscall nx mmxext fxsr_opt pdpelgb rdtscp Im 3wext 3dnow constant_tsc nonstop_tsc pni cx16 popcnt lahf_Im cmp_legacy svm extapic
cr8_legacy altmovcr8 abm ssed4a misalignsse 3dnowprefetch osvw

NIST API Page 3 of 12

90

91
92

93

94
95

96
97
98
99
100

101
102

103

104

105
106
107

108
109

110
111
112
113

114
115

116

117

118
119
120

FaCE

g++ -l. -Wall -m64 -std=c++11 -o facechallengestest facechallengestest.cpp -L. —Ifacechallenges_fmitga 1tol 07

The Standard C++ library should be used for development of the SDKs. The prototypes from the API of this document will
be written to a file "facechallenges.h" which will be included via

#tinclude <facechallenges.h>

The header files will be made available to implementers at http://nigos.nist.gov:8080/facechallenges/src.

NIST will handle all input of images via the JPEG and PNG libraries, sourced, respectively from http://www.ijg.org/ and
http://libpng.org.

All compilation and testing will be performed on x86 platforms. Thus, participants are strongly advised to verify library-
level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid linkage
problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). It is highly
recommended that participants run the open MEDS 1:1 challenge, available for download from
http://www.nist.gov/itl/iad/ig/facechallenges.cfm.

Dependencies on external dynamic/shared libraries such as compiler-specific development environment libraries are
discouraged. If absolutely necessary, external libraries must be provided to NIST upon prior approval by the Test Liaison.

1.5. Software and Documentation

1.5.1. SDK Library and Platform Requirements

Participants shall provide NIST with binary code only (i.e. no source code). Header files (“.h”) are allowed, but these shall
not contain intellectual property of the company nor any material that is otherwise proprietary. The SDK should be
submitted in the form of a dynamically linked library file.

The core library shall be named according to Table 2. Additional shared object library files may be submitted that support
this “core” library file (i.e. the “core” library file may have dependencies implemented in these other libraries).

Intel Integrated Performance Primitives (IPP) libraries are permitted if they are delivered as a part of the developer-
supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. The use of IPP
libraries shall not inhibit the SDK’s ability to run on CPUs that do not support IPP. Please take note that some IPP
functions are multithreaded and threaded implementations may complicate comparative timing.

SDKs will not have access to graphics processing units (GPUs).

Table 2 — Implementation library filename convention

Form libfacechallenges_provider_class_sequence.ending
Underscore libfacechallenges provider class sequence ending
delimited parts
of the filename
Description First part of the Single word “ltol” for 1:1 A two digit .S0
name, required to be | name of the submissions decimal identifier
this. main provider | “DETECTION” to start at 00 and
EXAMPLE: for face increment by 1
fmitga detection every time any
submissions SDK is sent to
NIST. EXAMPLE:
07
Example libfacechallenges_fmigta_1tol_07.so
1.5.2. Configuration and developer-defined data

The implementation under test may be supplied with configuration files and supporting data files. The total size of the
SDK, that is all libraries, include files, data files and initialization files shall be less than or equal to 1 073 741 824 bytes =
1024° bytes.

NIST API Page 4 of 12

121

122
123
124
125

126

127
128
129

130

131
132

133

134

135

136
137

138

139
140
141

142

143
144

145

146
147
148
149
150

151

152
153
154
155

156

157
158

FaCE

1.5.3. Submission folder hierarchy

Participant submissions should contain the following folders at the top level
* lib/ - contains all participant-supplied software libraries
* config/ - contains all configuration and developer-defined data
* doc/ - contains any participant-provided documentation regarding the submission

1.5.4. Installation and Usage

The SDK must install easily (i.e. one installation step with no participant interaction required) to be tested, and shall be
executable on any number of machines without requiring additional machine-specific license control procedures or
activation.

The SDK shall be installable using simple file copy methods. It shall not require the use of a separate installation program.

The SDK shall neither implement nor enforce any usage controls or limits based on licenses, number of executions,
presence of temporary files, etc. The submitted implementations shall remain operable with no expiration date.

Hardware (e.g. USB) activation dongles are not permitted.
1.6. Runtime behavior

1.6.1. Interactive behavior

The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the submitted library shall
not use graphical user interfaces nor terminal interaction e.g. from “standard input”.

1.6.2. Error codes and status messages

The SDK will be tested in non-interactive “batch” mode, without terminal support. Thus, the submitted library shall run
quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. An SDK may write
debugging messages to a log file - the name of the file must be declared in documentation.

1.6.3. Exception Handling

The application should include error/exception handling so that in the case of a fatal error, the return code is still
provided to the calling application.

1.6.4. External communication

Processes running on NIST hosts shall not side-effect the runtime environment in any manner, except for memory
allocation and release. Implementations shall not write any data to external resource (e.g. server, file, connection, or
other process), nor read from such. If detected, NIST will take appropriate steps, including but not limited to, cessation of
evaluation of all implementations from the supplier, notification to the provider, and documentation of the activity in
published reports.

1.6.5. Stateless behavior

All software components shall be stateless. Thus, all functions should give identical output, for a given input, independent
of the runtime history. NIST will institute appropriate tests to detect stateful behavior. If detected, NIST will take
appropriate steps, including but not limited to, cessation of evaluation of all implementations from the supplier,
notification to the provider, and documentation of the activity in published reports.

1.7. Threaded computations

Threading is not permitted, because NIST will parallelize the test by dividing the workload across many cores and many
machines. NIST's calling applications are single-threaded.

NIST API Page 5 of 12

159

160

161
162

163

164
165

166

167

168
169
170

171
172

173

174
175

176

177
178

FaCE

2. Data structures supporting the API

2.1.

Overview

This section describes separate APIs for the classes of participation described in section Table 1. All SDK's submitted to
FaCE shall implement the functions required by the rules for participation listed in section 1.1.

2.2.

Requirement

FaCE participants shall submit an SDK which implements the relevant C++ prototyped interfaces of clause 3. C++ was
chosen in order to make use of some object-oriented features.

2.3.

2.3.1.

Data structures

Data structure for encapsulating a single still image

For face verification, an individual is represented by K = 1 two-dimensional facial images. All facial images in the
verification test will contain one and only one face per image. For the face detection task, an image may contain one or

more faces.

2.3.2.
1.
2.
3.
4.
5.
6.
7.

2.3.3.

2.3.4.

NIST

Struct for encapsulating a

single image

Table 3 — IMAGE struct

C++ code fragment

Remarks

typedef struct IMAGE

{

uintlé_t width;

uintl6_t height;

uint8_t depth;

uint8 t format;

uint8_ t *data;
} IMAGE;

Number of pixels horizontally

Number of pixels vertically

Number of bits per pixel. Legal values are 8 and 24.

Flag indicating native format of the image as supplied to NIST
0x01 = JPEG (i.e. compressed data)
0x02 = PNG (i.e. never compressed data)

Pointer to raster scanned data. Either RGB color or intensity.
If image_depth == 24 this points to 3WH bytes RGBRGBRGB...
If image_depth == 8 this pointsto WH bytes TIITIIIT

Typedef for encapsulating a set of face images from a single person

Table 4 — MULTIFACE typedef

C++ code fragment

Remarks

typedef std::vector<IMAGE> MULTIFACE;

person. The number of items stored in the vector is
accessible via the vector::size() function.

Vector containing F pre-allocated face images of the same

Struct for encapsulating a

detected face from an image

Table 5 - BOUNDING_BOX struct

C++ code fragment

Remarks

typedef struct BOUNDING BOX

{
uintlé_t x;

x-coordinate of top-left corner of bounding box around face

API

Page 6 of 12

179

180

181
182
183
184

185
186
187

188

189

190

191
192

193

194
195

g w| N

uintlé_t y;

uintl6_t width;

uintl6_t height;
} BOUNDING_BOX;

FaCE

y-coordinate of top-left corner of bounding box around face

width, in pixels, of bounding box around face

height, in pixels, of bounding box around face

2.3.5.

Data type for similarity scores

Verification functions shall return a measure of the similarity between the face data contained in the two templates. The
data type shall be an 64-bit double precision real. The legal range is [0, DBL_MAX], where the DBL_MAX constant is larger
than practically needed and defined in the <limits.h> include file. Larger values indicate more likelihood that the two

samples are from the same person.

Providers are cautioned that algorithms that natively produce few unique values (e.g. integers on [0,127]) will be
disadvantaged by the inability to set a threshold precisely, as might be required to attain a false match rate of exactly

0.0001, for example.

3. API

3.1.

3.1.1.

1:1 Verification

Overview

The 1:1 testing will proceed in three phases: preparation of enrollment templates; preparation of verification templates;
and matching. These are detailed in Table 6.

Table 6 — Functional summary of the 1:1 application

Phase Description Performance Metrics to be reported
by NIST
Initialization | Function to allow implementation to read configuration data, if | None
any.
Enroliment Given K = 1 input images of an individual, the implementation | Statistics of the time needed to
will create a proprietary enrollment template. NIST will produce a template.
manage storage of these templates. Statistics of template size.
NIST requires that these operations may be executed in a loop | Rate of failure to produce a
in a single process invocation, or as a sequence of independent | template and rate of erroneous
process invocations, or a mixture of both. function.
Verification | Given K = 1 input images of an individual, the implementation | Statistics of the time needed to
will create a proprietary verification template. NIST will produce a template.
manage storage of these templates. Statistics of template size.
NIST requires that these operations may be executed in a loop | Rate of failure to produce a
in a single process invocation, or as a sequence of independent | template and rate of erroneous
process invocations, or a mixture of both. function.
Matching (i.e. | Given one proprietary enrollment template and one Statistics of the time taken to
comparison) | proprietary verification template, compare these and produce | compare two templates.
a similarity score. Accuracy measures, primarily
NIST requires that these operations may be executed in a loop |reported as DETs.
in a single process invocation, or as a sequence of independent
process invocations, or a mixture of both.

NIST

API

Page 7 of 12

196

197

198
199
200

201

202

203

204
205

206

FaCE

[Enrollment phase

Verification phase]

Multiface

SDK

—

Enrollment
template

SDK Multiface

Comparison Verification

Engine

template

Similarity Score

3.1.2.

Maximum template size

Figure 1 — Schematic of verification

All implementations shall report the maximum expected template sizes. These values will be used by the NIST test
harnesses to pre-allocate template data. The values should apply to a single image. For a MULTIFACE containing K
images, NIST will allocate K times the value returned. The function call is given in Table 7.

Table 7 — Implementation template size requirements

Prototype int32_t get_max_template_sizes(
uint32_t &max_enrollment_template_size, Output
uint32_t &max_verification_template_size); Output
Description This function retrieves the maximum template size needed by the feature extraction routines.
Output max_enrollment_template_size The maximum possible size, in bytes, of the memory needed to store feature
Parameters data from a single enrollment image.

max_verification_template_size

The maximum possible size, in bytes, of the memory needed to store feature
data from a single verification or identification image.

Return Value 0 Success
Other Vendor-defined failure
3.1.3. Initialization

Before any template generation or matching calls are made, the NIST test harness will make a call to the initialization of
the function in Table 8.

Table 8 — SDK initialization

Prototype int32_t initialize_verification(
const std::string &configuration_location); Input
Description This function initializes the SDK under test. It will be called by the NIST application before any call to the Table 9

functions convert_multiface_to_enrollment_template or convert_multiface_to_verification_template. The SDK
under test should set all parameters.

Input Parameters

configuration_location

A read-only directory containing any developer-supplied configuration parameters or
run-time data files. The name of this directory is assigned by NIST. It is not hardwired
by the provider. The names of the files in this directory are hardwired in the SDK and
are unrestricted.

Output none

Parameters

Return Value 0 Success
2 Vendor provided configuration files are not readable in the indicated location.
Other Vendor-defined failure

NIST

API Page 8 of 12

207

208
209

210

211
212

213

3.1.4.

FaCE

Template generation

The functions of Table 9 support role-specific generation of a template data. The format of the templates is entirely

proprietary.

Table 9 — Template generation

Prototypes

int32_t convert_multiface_to_enrollment_template(
const MULTIFACE &input_faces,

uint32_t &template_size,

uint8_t *proprietary_template);

Input

Output

Output

int32_t convert_multiface_to_verification_template(
const MULTIFACE &input_faces,

uint32_t &template_size,

uint8_t *proprietary_template);

Input

Output

Output

Description

This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output
template is allocated by the NIST test harness before the call i.e. the implementation shall not allocate
memory for the result. In all cases, even when unable to extract features, the output shall be a template
record that may be passed to the match_templates function without error. That is, this routine must
internally encode "template creation failed" and the matcher must transparently handle this.

Input
Parameters

input_faces

An instance of a Table 4 structure. Implementations must alter their behavior according to the
number of images contained in the structure.

Output
Parameters

template_size

The size, in bytes, of the output template

proprietary_template | The output template. The format is entirely unregulated. NIST will allocate a KT byte buffer for

this template: The value K is the number of images in the MULTIFACE; the value T is output by
the maximum template size functions of Table 7.

Return Value

0 Success

2 Elective refusal to process this kind of MULTIFACE

4 Involuntary failure to extract features (e.g. could not find face in the input-image)
6 Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
8 Cannot parse input data (i.e. assertion that input record is non-conformant)

Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

3.1.5.

Matching

Matching of one enrollment against one verification template shall be implemented by the function of Table 10.

Table 10 — Template matching

Prototype int32_t match_templates(
const uint8_t *verification_template, Input
const uint32_t verification_template_size, Input
const uint8_t *enrollment_template, Input
const uint32_t enrollment_template_size, Input
double &similarity); Output
Description This function compares two opaque proprietary templates and outputs a similarity score, which need not satisfy

function return value shall be 2.

the metric properties. NIST will allocate memory for this parameter before the call. When either or both of the
input templates are the result of a failed template generation (see Table 9), the similarity score shall be -1 and the

Input Parameters

verification_template

A template from convert_multiface_to_verification_template().

verification_template_size

The size, in bytes, of the input verification template 0 < N < 221

enrollment_template

A template from convert_multiface_to_enrollment_template().

enrollment_template_size

The size, in bytes, of the input enroliment template 0 <N < 221

Output

similarity

A similarity score resulting from comparison of the templates, on the range

NIST

API

Page 9 of 12

214

215

216
217

218

219

220
221

222

223
224

FaCE

Parameters

[0,DBL_MAX].

Return Value

0 Success
2 Either or both of the input templates were result of failed feature extraction
Other Vendor-defined failure

3.2. Face Detection

3.2.1. Initialization
Before any calls to detect_faces are made, the NIST test harness will make a call to the initialization of the function in
Table 11.
Table 11 — SDK initialization
Prototype int32_t initialize_detection(
const std::string &configuration_location); Input
Description This function initializes the SDK under test. It will be called by the NIST application before any call to the function

detect_faces. The SDK under test should set all parameters.

Input Parameters

configuration_location

A read-only directory containing any developer-supplied configuration parameters or
run-time data files. The name of this directory is assigned by NIST. It is not hardwired
by the provider. The names of the files in this directory are hardwired in the SDK and
are unrestricted.

Output none

Parameters

Return Value 0 Success
2 Vendor provided configuration files are not readable in the indicated location.
Other Vendor-defined failure

3.2.2. Face detection

The function of Table 12 supports the detection of faces in an image. An image may contain one or more faces.

Table 12 — Face detection

Prototypes int32_t detect_faces(
const IMAGE &input_image, Input
std::vector<BOUNDING_BOX> &bounding_boxes); Output

Description This function takes an IMAGE as input, and populates a vector of BOUNDING_BOX with the number of faces detected

from the input image. The implementation could call vector::push_back to insert into the vector.

Input input_image An instance of a struct representing a single image from Table 3.
Parameters
Output bounding_boxes For each face detected in the image, the function shall create a BOUNDING_BOX (see Table 5),
Parameters populate the x, y, width, height of the bounding box, and add it to the vector.
Return Value 0 Success
2 Elective refusal to process this kind of IMAGE
4 Involuntary failure to extract features (e.g. could not find face in the input-image)
6 Cannot parse input data
Other Vendor-defined failure. Failure codes must be documented and communicated to NIST with

the submission of the implementation under test.

NIST

API Page 10 of 12

225
226

227

228
229
230

231
232

233
234
235

236

237

238
239

240
241
242
243

244
245

246
247
248

249
250

251

252
253

254

255
256

257
258
259
260

FaCE

Annex A
Submission of Implementations to the FaCE

A1 Submission of implementations to NIST

NIST requires that all software, data and configuration files submitted by the participants be signed and encrypted.
Signing is done with the participant's private key, and encryption is done with the NIST public key. The detailed
commands for signing and encrypting are given here: http://www.nist.gov/itl/iad/ig/encrypt.cfm

NIST will validate all submitted materials using the participant's public key, and the authenticity of that key will be verified
using the key fingerprint. This fingerprint must be submitted to NIST by writing it on the signed participation agreement.

By encrypting the submissions, we ensure privacy; by signing the submission, we ensure authenticity (the software
actually belongs to the submitter). NIST will reject any submission that is not signed and encrypted. NIST accepts no
responsibility for anything that is transmitted to NIST that is not signed and encrypted with the NIST public key.

A.2 How to participate

Those wishing to participate in FaCE testing must do all of the following.

— IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here.
http://www.nist.gov/itl/iad/ig/encrypt.cfm

— Send a signed and fully completed copy of the Application to Participate in the Face Recognition Challenges and
Evaluations (FaCE). This is available at http://www.nist.gov/itl/iad/ig/facechallenges.cfm. This must identify, and
include signatures from, the Responsible Parties as defined in the application. The properly signed FaCE Application
to Participate shall be sent to NIST as a PDF.

— Provide an SDK (Software Development Kit) library, which complies with the API (Application Programmer Interface)
specified in this document.

* Encrypted data and SDKs below 20MB can be emailed to NIST at FaceSubmissions@nist.gov.
* Encrypted data and SDKS above 20MB shall be
EITHER

= Splitinto sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks,
and then rename to include the filename extension need for passage through the NIST firewall.

= you$ split —a 3 -d -b 9000000 libfacechallenges fmitga 1ltol 02.tgz.gpg

- you$ 1s -1 x?7?27? | xargs —-iQ mv Q
libfacechallenges fmitga 1ltol 02 Q.tgz.gpg

= Email each part in a separate email. Upon receipt NIST will

= nist% cat facechallenges fmitga 1ltol 02 *.tgz.gpg >
libfacechallenges fmitga 1ltol 02.tgz.gpg

OR
= Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver’,
OR
= Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address:
FaCE Test Liaison (A203) In cases where a courier needs a phone number, please
100 Bureau Drive use NIST shipping and handling on: 301 -- 975 -- 6296.
A203/Tech225/Stop 8940
NIST

2 NIST will not register, or establish any kind of membership, on the provided website.

NIST API Page 11 of 12

261

NIST

FaCE

Gaithersburg, MD 20899-8940
USA

API

Page 12 of 12

